đ Marque-pages Pinboard
â Retour Ă tous les marque-pages157 rĂ©sultats (1-157 marque-pages affichĂ©s)
www.youtube.com
Speaker: Graham FarmeloFilmed at The Royal Society, London on Fri 04 Mar 2011 1pm - 2pmhttp://royalsociety.org/events/2011/paul-dirac/
www.youtube.com
Cédric Villani, mathématicien dans la série "Osez et faites des sciences" de l'association Femmes et Sciences. Cédric Villani s'adresse aux collégien.ne.s et...
elliptic-curves.art
www.nan.fyi
An interactive guide to understanding SVG paths and path commands.
kingbird.myphotos.cc
www.youtube.com
This is a shortened and slightly modified version of Arnold's proof. Familiarity with complex numbers is required to understand the proof.Recommended further...
ericmjl.github.io
en.wikipedia.org
en.wikipedia.org
iquilezles.org
Tutorials and articles of Inigo Quilez on computer graphics, fractals, demoscene, shaders and more.
salykova.github.io
TL;DR The code from the tutorial is available at matmul.c. This blog post is the result of my attempt to implement high-performance matrix multiplication on CPU while keeping the code simple, portable and scalable. The implementation follows the BLIS design, works for arbitrary matrix sizes, and, when fine-tuned for an AMD Ryzen 7700 (8 cores), outperforms NumPy (=OpenBLAS), achieving over 1 TFLOPS of peak performance across a wide range of matrix sizes.
fr.wikipedia.org
www.oranlooney.com
Kaprekarâs routine is a simple arithmetic procedure which, when applied to four digit numbers, rapidly converges to the fixed point 6174, known as the Kaprekar constant. Unlike other famous iterative procedures such as the Collatz function, the somewhat arbitrary nature of the Kaprekar routine doesnât hint at fundamental mathematical discoveries yet to be made; rather, its charm lies in its intuitive definition (requiring no more than elementary mathematics,) its oddly off-center fixed point of 6174, and its surprisingly rapid convergence (which requires only five iterations on average and never more than seven.
github.com
I'm sick of complex blogging solutions, so markdown files in a git repo it is - githublog/2024/5/29/fast-inverse-sqrt.md at main · francisrstokes/githublog
www.jsoftware.com
jverzani.github.io
pair.withgoogle.com
en.wikipedia.org
xahlee.info
www.lemonde.fr
A 72 ans, le scientifique est le cinquiÚme Français à recevoir le prix Abel, remis ce mercredi 20 mars. Ce spécialiste des probabilités, ancien directeur de recherche au CNRS, revient sur sa trajectoire chaotique. Rencontre au lendemain de sa prestigieuse récompense.
www.youtube.com
LâAcadĂ©mie norvĂ©gienne des sciences et des lettres a dĂ©cidĂ© dâattribuer le prix Abel 2024 au Français Michel Talagrand, qui a effectuĂ© sa carriĂšre de cherche...
en.wikipedia.org
github.com
BLAS-like Library Instantiation Software Framework - flame/blis: BLAS-like Library Instantiation Software Framework
math.bu.edu
www.complexityexplorer.org
www.kalmanfilter.net
x0axz.com
Building Autograd Engine & Neural Network Library: An Interactive Guide
aima.cs.berkeley.edu
probml.github.io
Probabilistic Machine Learning: Advanced Topics
probml.github.io
Probabilistic Machine Learning: An Introduction
www.amazon.com
Computer Systems: A Programmer's Perspective: 9780134092669: Computer Science Books @ Amazon.com
infinitedescent.xyz
fr.wikipedia.org
en.wikipedia.org
florian.github.io
There are a whole bunch of popular interview questions that can be solved in one of two ways: Either using common data structures and algorithms in a sensible manner, or by using some properties of...
hypertextbook.com
Chaos â the study of the uncontainable, the unpredictable, the messy. Fractals â fantastic curves and surfaces unlike anything ever seen in mathematics before. Dimension â a way to bring order to chaos and measure to madness. One can devote an academic lifetime to these topics, but this introduction makes them as easy to understand as the straight line and the parabola.
www.institut-pandore.com
dsego.github.io
michel.talagrand.net
tigyog.app
Back in 1936, Kurt Gödel published his first mathematical mic-drop: âOur formal systems of logic can make statements that they can neither prove nor disprove.â In this chapter, youâll learn what this famous theorem means, and youâll learn a proof of it that builds upon Turingâs solution to the Halting Problem.
nhigham.com
Royal Society Research Professor and Richardson Professor of Applied Mathematics Fellow of the Royal Society Fellow of the Royal Academy of Engineering SIAM Fellow ACM Fellow Member of Academia Europaea Numerical Linear Algebra group Department of Mathematics Books and Software GitHub repositories (anymatrix, chop, float-params, What Is?, etc.) NLEVP (nonlinear eigenvalue problems collection) The MatrixâŠ
nhigham.com
In numerical linear algebra we are concerned with solving linear algebra problems accurately and efficiently and understanding the sensitivity of the problems to perturbations. We describe seven sins, whereby accuracy or efficiency is lost or misleading information about sensitivity is obtained. 1. Inverting a Matrix In linear algebra courses we learn that the solution toâŠ
www.fractal.garden
Fractal Garden - An Exhibition Of Mathematical Beauty: A page to collect fractal renderings, and teach people about the awesome connections between different fractals and how they are drawn. Also, they look pretty.
www.madore.org
www.cemyuksel.com
x.st
This article discusses a âvisualâ derivation of the formula for 1Âł+2Âł+âŠ+nÂł.
lambdaway.free.fr
github.com
Collection of quotes on notation design & how it affects thought. - k-qy/notation: Collection of quotes on notation design & how it affects thought.
www.jsoftware.com
en.wikipedia.org
www.gibney.org
www.mpfr.org
rstudio.github.io
fr.wikipedia.org
towardsdatascience.com
cba.mit.edu
en.wikipedia.org
joblib.readthedocs.io
www.autodesk.com
mattferraro.dev
en.wikipedia.org
en.wikipedia.org
www.minizinc.org
static.laszlokorte.de
arxiv.org
We demonstrate that a neural network pre-trained on text and fine-tuned on code solves Mathematics problems by program synthesis. We turn questions into programming tasks, automatically generate programs, and then execute them, perfectly solving university-level problems from MIT's large Mathematics courses (Single Variable Calculus 18.01, Multivariable Calculus 18.02, Differential Equations 18.03, Introduction to Probability and Statistics 18.05, Linear Algebra 18.06, and Mathematics for Computer Science 6.042), Columbia University's COMS3251 Computational Linear Algebra course, as well as questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems specifically designed to assess mathematical reasoning. We explore prompt generation methods that enable Transformers to generate question solving programs for these subjects, including solutions with plots. We generate correct answers for a random sample of questions in each topic. We quantify the gap between the original and transformed questions and perform a survey to evaluate the quality and difficulty of generated questions. This is the first work to automatically solve, grade, and generate university-level Mathematics course questions at scale. This represents a milestone for higher education.
liorsinai.github.io
blog.computationalcomplexity.org
en.wikipedia.org
oeis.org
fr.wikipedia.org
fr.wikipedia.org
mathlets.org
en.wikipedia.org
fr.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
kalker.strct.net
en.wikipedia.org
en.wikipedia.org
www.tondering.dk
johnhw.github.io
This is the first million integers, represented as binary vectors indicating their prime factors, and laid out using the UMAP dimensionality reduction algorithm by Leland McInnes. Each integer is represented in a high-dimensional space, and gets squished down to 2D so that numbers with similar prime factorisations are closer together than those with dissimilar factorisations.
math.mit.edu
fr.wikipedia.org
fr.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
math.uchicago.edu
arxiv.org
Force-directed algorithms are among the most flexible methods for calculating layouts of simple undirected graphs. Also known as spring embedders, such algorithms calculate the layout of a graph using only information contained within the structure of the graph itself, rather than relying on domain-specific knowledge. Graphs drawn with these algorithms tend to be aesthetically pleasing, exhibit symmetries, and tend to produce crossing-free layouts for planar graphs. In this survey we consider several classical algorithms, starting from Tutte's 1963 barycentric method, and including recent scalable multiscale methods for large and dynamic graphs.
en.wikipedia.org
www2.hawaii.edu
artagnon.com
www.math.uh.edu
en.wikipedia.org
alexhwilliams.info
medium.com
mabotkin.github.io
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
seeing-theory.brown.edu
en.wikipedia.org
fr.wikipedia.org
blog.hvidtfeldts.net
towardsdatascience.com
bugman123.com
bugman123.com
en.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
www.youtube.com
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
www.youtube.com
en.wikipedia.org
en.wikipedia.org
www.youtube.com
jackschaedler.github.io
www.jezzamon.com
stats.stackexchange.com
en.wikipedia.org
naokishibuya.medium.com
en.wikipedia.org
en.wikipedia.org
en.wikipedia.org
en.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
fr.wikipedia.org
www.newyorker.com
www.math3ma.com
www.franceculture.fr